ediwth
[TIL] 210405 - Deep LearniNg (~C1W3L03)
이 글은... Andrew Ng 교수의 Deep Learning 강좌 C1W3L03 까지의 내용을 정리한 것이다. 신경망 네트워크의 구성과 대략적인 계산 흐름을 살펴보았다. 내용 요약 신경망 네트워크의 구성 알아보기 신경망은 아래 그림과 같이 3개의 층으로 구별할 수 있다. 입력층: 학습 데이터의 입력 특성들의 층이다. 은닉층: 입력층과 출력층 사이에 있는 층, 데이터를 확인할 수는 없다. 출력층: 출력 특성들의 층이다. 신경망 네트워크의 층을 표기할 때는 $a^{[l]}$라고 쓴다. 여기서 $l$이 층 수를 의미한다. 입력층은 0층이다. 신경망 네트워크의 층수를 셀 때 입력층은 포함하지 않는다. 위 그림에서 층은 3개로 구분되지만 2층 신경망이라 부른다. 신경망 네트워크 출력의 계산 위에서 살펴본 은닉..